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a b s t r a c t

In order to obtain an adequate description of risk aversion for insuring critical path problem, this paper
develops a new class of two-stage minimum risk problems. The first-stage objective function is to
minimize the probability of total costs exceeding a predetermined threshold value, while the second-
stage objective function is to maximize the insured task durations. For general task duration
distributions, we adapt sample average approximation (SAA) method to probability objective function.
The resulting SAA problem is a two-stage integer programming model, in which the analytical
expression of second-stage value function is unavailable, we cannot solve it by conventional optimiza-
tion algorithms. To avoid this difficulty, we design a new hybrid algorithm by combining dynamic
programming method (DPM) and genotype-phenotype-neighborhood based binary particle swarm
optimization (GPN-BPSO), where the DPM is employed to find the critical path in the second-stage
programming problem. We conduct some numerical experiments via a critical path problem with 30
nodes and 42 arcs, and discuss the proposed risk averse model and the experimental results obtained by
hybrid GPN-BPSO, hybrid genetic algorithm (GA) and hybrid BPSO. The computational results show that
hybrid GPN-BPSO achieves the better performance than hybrid GA and hybrid BPSO, and the proposed
critical path model is important for risk averse decision makers.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In a complex project management problem, we often use a
directed network graph to describe various tasks and the relation-
ships among the tasks. In this framework, the arcs represent
dependent tasks and the arc weights serve as associated task
durations. Also, there exists a node 0 representing the start of the
project and a node n representing its termination. A project can be
considered completed if all its activities have been finished. An
important theoretical result is that the minimum time to complete
all the activities in the activity network equals to the length of the
longest path from the source node to the destination node [1].
Thus, this path, called critical path, represents the sequence of
activities, which will take the longest time to complete. Chen et al.
[2] developed a polynomial time algorithm to find the critical path
and analyzed the float of each arc in a time-constrained activity
network. Guerriero and Talarico [3] proposed a general method to
find the critical path in a deterministic activity-on-the-arc net-
work, considering three different types of time constraints.
Another area of research dealt with the stochastic nature of

activity time. For example, Kelley [4,5] and Moehring [6] estimated
the probability that a project would be completed by a given
deadline if the duration for each activity is not known with
certainty; Burt and Garman [7], Bowman [8] and Mitchell and
Klastorin [9] treated mass uncertain information by heuristic-
based and Monte Carlo simulation-based techniques, and Shen
et al. [10] proposed expectation and chance-constrained models
for insuring critical path problems and designed decomposition
strategies to solve these models.

In this paper, we approach the insuring critical path problem
from a new viewpoint. It is known that the appropriateness of
expectation criterion for insuring critical path problem depends on
the assumption that the insuring process can be repeated a great
number of times, this implies by the law of large numbers that in
the long run the average cost will be equal to the expected cost.
But, this assumption will often not be justified and thus the
expected cost may not be of much interest to risk averse decision
makers. On the other hand, the optimal solution of the expected
value problem may only assure the achievement of the corre-
sponding expected cost with a relatively small probability. Conse-
quently, the risk averse decision maker will not consider the
solution of the expected value problem to be optimal. Instead,
what may be desired is a solution ensuring a low probability of
very large costs. These considerations lead us to adopt minimum
risk criterion in insuring critical path problems. In the proposed
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risk averse two-stage stochastic insuring critical path problem, the
first-stage objective function is to minimize the probability of total
costs exceeding a predetermined threshold value, while the
second-stage objective function is to maximize the insured task
durations. For general task duration distributions, we adapt the
SAA method to probability objective function and turn the original
insuring critical path problem into its associated SAA one. This
approximation method for chance constrained model and
expected value model have been discussed in [11–13]. Since the
resulting SAA model belongs to the class of NP-hard problems, we
cannot solve it by conventional optimization algorithms. In this
paper, we will employ evolutionary algorithms (EAs) to solve the
resulting SAA critical path problem.

EAs are stochastic search methods that have been used in a
variety of fields. Among existing EAs, GA [14] and PSO [15,16] are
the well-known tools for solving complex optimization problems,
and many modified and improved GA and PSO as well as their
successful applications can be found in the literature. For example,
Zeng et al. [17] proposed a dynamic chain-like agent GA for solving
global numerical optimization problem; He and Tan [18] proposed
a two-stage GA and applied it to automatic clustering; Lee et al.
[19] modified and improved BPSO; Nanni and Lumini [20] pro-
posed an efficient method based on PSO for finding a good set of
prototypes; Qin and Liu [21,22] designed Monte Carlo simulation-
based GAs to solve stochastic data envelopment analysis problems,
and Liu et al. [23] solved stochastic portfolio selection problems by
Monte Carlo simulation-based PSO algorithms. Motivated by the
work mentioned above, this paper designs a new hybrid algorithm
by combining DPM and GPN-BPSO, where DPM is employed to
find the critical path in the second-stage programming problem. In
our designed algorithm, we adopt the concept of genotype–
phenotype in biology. The genotype means genetic messages
carried by the individual's genes, and the phenotype denotes all
the observable characteristics of an individual such as physical
appearance and internal physiology. To demonstrate the effective-
ness of the proposed method, we conduct some numerical
experiments via a critical path problem with 30 nodes and 42
arcs. We first solve our critical path problem by hybrid GPN-BPSO,
then compare its solution results with those obtained by hybrid
GA and hybrid BPSO. We also discuss the difference between the
proposed risk averse insuring critical path model and the tradi-
tional risk neural model via numerical experiments.

The remainder of this paper is organized as follows: Section 2
presents a new class of risk averse two-stage stochastic insuring
critical path problems. In Section 3, we adapt the SAA method to
probability objective function, and turn the original insuring
critical path problem into its associated SAA one, which can be
reformulated as a two-stage integer programming model by
introducing additional binary variables. To solve the resulting
SAA critical path problem, Section 4 designs a new hybrid algo-
rithm by integrating DPM and GPN-BPSO. Section 5 provides one
critical path problem with 30 nodes and 42 arcs and performs
some numerical experiments to demonstrate the effectiveness of
the designed hybrid GPN-BPSO. Section 6 gives detailed discus-
sions about the proposed insuring critical path model and the
experimental results. Finally, Section 7 gives the conclusions.

2. Formulation of risk averse two-stage stochastic insuring
critical path problem

In this section, we will construct a risk averse two-stage
stochastic optimization model for insuring critical path problem.
For this purpose, we adopt the following notations to describe our
problem.

Indices:

i: index of nodes, iAN;
j: index of nodes, jAN.

Parameters:

N¼ f0;1; . . . ;ng: the set of nodes in the network;
A: the set of arcs in the network, A�N � N, where A is

topologically ordered such that ði; jÞAA only if io j;
GðN;AÞ: the directed graph representing the tasks to be com-

pleted in a complex project;
FSðiÞ ¼ fj∣ði; jÞAAg: the set of nodes adjacent from node i, 8 iAN;
RSðiÞ ¼ fj∣ðj; iÞAAg: the set of nodes adjacent to node i, 8 iAN;
Ω: the set of possible scenarios;
ω: a scenario of Ω;
cij: the cost of insuring arc ði; jÞAA;
dωij : an uninsured task duration of arc ði; jÞAA in scenario ω;
gωij : an insured task duration of arc ði; jÞAA in scenario ω;
Θ: a nondecreasing function of task completion time that

penalizes the critical path length in the second stage for
each scenario ω;

ξ: the random vector obtained by piecing together all
random task durations in the network;

φ: a predetermined maximum allowable cost.

Decision variables:

xij: 1 if arc ði; jÞ is insured, and 0 otherwise;
x: a decision vector ðxijÞ in f0;1gjAj with jAj being the

number of arcs in the network;
yωij : 1 if arc ði; jÞ is part of one identified critical path in

scenario ω, and 0 otherwise.

The second-stage objective function:

The second-stage objective function is to maximize the sum of
the insured task durations:

max ∑
ði;jÞAA

ðdωij �ðdωij �gωij ÞxijÞyωij :

The second-stage constraints:

The first constraint imposes a single-assignment rule:

∑
jA FSð0Þ

yω0j ¼ 1:

The second constraint enforces flow-balance constraints for critical
path contiguity:

∑
jA FSðiÞ

yωij � ∑
lARSðiÞ

yωli ¼ 0; 8 iAN\f0;ng:

The third constraint bounds a binary decision variable:

yωij ¼
1 if arc ði; jÞ is part of an identified critical path in scenario ω
0 otherwise:

�

Hence, the second-stage programming problem can be built as
follows:

max ∑
ði;jÞAA

ðdωij �ðdωij �gωij ÞxijÞyωij
subject to : ∑

jAFSð0Þ
yω0j ¼ 1

∑
jAFSðiÞ

yωij � ∑
lARSðiÞ

yωli ¼ 0; 8 iAN\f0;ng

yωij Af0;1g; 8ði; jÞAA:

8>>>>>>>>><
>>>>>>>>>:

ð1Þ
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The first-stage objective function:

For each arc ði; jÞAA, we represent the cost of insuring (i,j) by cij, and
define the binary decision variable xij, where xij ¼ 1 if we insure arc (i,j)
and xij ¼ 0 otherwise. Thus, the insuring cost in the first stage is
∑ði;jÞAAcijxij. In our insuring critical path problem, we assume that the
critical path lengths are carefully monitored since financial penalties
accrue as a nondecreasing function of task completion time. More
precisely, we define a nondecreasing function Θ that penalizes the
critical path length in the second stage for each scenario and fixed first-
stage decision x¼ ðxijÞ. Thus, the penalizing cost in the second stage is
ΘðQ ðx;ξðωÞÞÞ for scenario ω, where Q ðx; ξðωÞÞ is the optimal value of
problem (1), representing the critical path length in scenario ω.

As a consequence, the total costs incurred in the two stages can
be represented as the following random function:

f ðx;ωÞ ¼ ∑
ði;jÞAA

cijxijþΘðQ ðx; ξðωÞÞÞ;

where x¼ ðxijÞ; ði; jÞAA. Traditional stochastic programming is risk
neutral in the sense that it is concerned with the optimization of
an expectation criterion for random cost f ðx;ωÞ, in which the sum
of the first-stage cost and the expected value of second-stage cost
is minimized. This leads to the following objective function:

min ∑
ði;jÞAA

cijxijþE½ΘðQ ðx; ξðωÞÞÞ�:

The appropriateness of expectation criterion for insuring critical
path problem depends on the assumption that the insuring process
can be repeated a great number of times, this implies by the law of
large numbers that in the long run the average cost will be equal to
the expected cost. But, this assumption will often not be justified and
thus the expected cost may not be of much interest to risk averse
decision makers. In addition, the optimal solution of the expected
value problem may only assure the achievement of the corresponding
expected cost with a relatively small probability. These considerations
imply that the risk averse decision makers will not consider the
solution of the expected value problem to be optimal. Instead, what
may be desired is a solution ensuring a low probability of very large
costs. The minimum risk insuring critical path problem is the problem
of minimizing the probability of total costs exceeding a predetermined
threshold value φ, which may be the level of bankruptcy or budget
limit. Formally, the first-stage objective function reads

min Pr ∑
ði;jÞAA

cijxijþΘðQ ðx; ξðωÞÞÞ4φ

( )
;

and the first-stage programming problem can be built as

min Pr ∑
ði;jÞAA

cijxij þ ΘðQ ðx; ξðωÞÞÞ4φ

( )

subject to : xijAf0;1g; 8ði; jÞAA:

8>><
>>: ð2Þ

Combining (1) and (2), we can formally build a risk averse two-
stage stochastic insuring critical path programming model as follows:

min Pr ∑
ði;jÞAA

cijxij þ ΘðQ ðx; ξðωÞÞÞ4φ

( )

subject to : xijAf0;1g; 8ði; jÞAA;

8>><
>>: ð3Þ

where Q ðx; ξðωÞÞ is the optimal value of the following 0–1 program-
ming problem:

max ∑
ði;jÞAA

ðdωij �ðdωij �gωij ÞxijÞyωij
subject to : ∑

jA FSð0Þ
yω0j ¼ 1

∑
jA FSðiÞ

yωij � ∑
lARSðiÞ

yωli ¼ 0; 8 iAN\f0;ng

yωij Af0;1g; 8ði; jÞAA:

8>>>>>>>>><
>>>>>>>>>:

ð4Þ

We next define the feasible region of two-stage minimum risk
problem (3).

First, suppose that the first-stage decision variable x¼ ðxijÞ has
to satisfy the deterministic constraint

D1 ¼ fxAf0;1gjAj∣xijAf0;1g; 8ði; jÞAAg; ð5Þ
where jAj is the number of arcs in the network.

Second, to define the feasible solution of problem (3), we
introduce additional constraints on x. Let D2 be the set of all those
x vectors in f0;1gjAj for which problem (4) has a feasible solution
y¼ ðyωij Þ for almost every possible realized value ξðωÞ of random
vector ξ, that is the critical path can be found for almost every
scenario ω. If we denote Q ðx;ξðωÞÞ as the critical path length of
problem (4), then we can express D2 as follows:

D2 ¼ fxAf0;1gjAj∣PrfQ ðx; ξÞo1g¼ 1g: ð6Þ
Finally, the feasible region D of problem (3) is defined as

D¼D1 \ D2.
Note that in problem (4), the objective function is to maximize

the sum of task durations, the first constraint imposes the single-
assignment rule, the second constraint enforces the flow-balance
constraints for critical path contiguity, and the last constraint
bounds the y variables between 0 and 1. Then the critical path of
problem (4) can always be found for every scenario and first-stage
decision. That is, problem (3) is a complete recourse two-stage
stochastic integer programming problem (see, [24]). Therefore,
D2 ¼ f0;1gjAj, and the feasible region of problem (3) is

D¼ fxAf0;1gjAj∣xijAf0;1g; 8ði; jÞAAg: ð7Þ
Before ending this section, we highlight the difficulty about the

solution of problem (3). One of the reasons is that for a given first-
stage decisions ðxijÞ, the quantity of probability objective function

Pr ∑
ði;jÞAA

cijxij þ ΘðQ ðx; ξðωÞÞÞ4φ

( )

is hard to evaluate since it requires the computation of multi-
dimensional integration. In the next section, we discuss the
approximation approach to evaluating this probability objective
function based on the technique of Monte Carlo simulation.

3. The SAA insuring critical path problem

In this section, we adapt the SAA method to probability
objective function. As a result, we can turn the original insuring
critical path problem (3) into its associated SAA model.

More precisely, let K be the number of the sample size, and
ξ1; ξ2;…; ξK the independent identically distributed sample of K
realizations of random vector ξ. Then the original probability
objective function becomes the following SAA probability func-
tion:

Pr ∑
ði;jÞAA

cijxij þ ΘðQ ðx; ξkÞÞ4φ

( )
:

Let z be a binary vector whose components zk; k¼ 1;2;…;K ,
take 1 if the corresponding set of constraints has to be satisfied
and 0 otherwise. In addition, we introduce a large enough positive
number M such that the following inequalities hold

∑
ði;jÞAA

cijxij þ ΘðQ ðx; ξkÞÞ�Mð1�zkÞ4φ; k¼ 1;2;…;K :

According to the law of large numbers, the SAA probability
function can be equivalent represented by

1
K

∑
K

k ¼ 1
zk:

Z. Li et al. / Neurocomputing 148 (2015) 129–135 131



As a consequence, the original insuring critical path problem
can be replaced by the following SAA model

min 1
K ∑

K

k ¼ 1
zk

subject to : ∑
ði;jÞAA

cijxij þ ΘðQ ðx; ξkÞÞ�Mð1�zkÞ4φ; k¼ 1;2;…;K

xijAf0;1g; 8ði; jÞAA

zkAf0;1g; k¼ 1;2;…;K;

8>>>>>>>><
>>>>>>>>:

ð8Þ
where Q ðx; ξkÞ is the optimal value of the following 0–1 program-
ming problem:

max ∑
ði;jÞAA

ðdkij�ðdkij�gkijÞxijÞykij

subject to : ∑
jA FSð0Þ

yk0j ¼ 1

∑
jA FSðiÞ

ykij� ∑
lARSðiÞ

ykli ¼ 0; 8 iAN\f0;ng

ykijAf0;1g; 8ði; jÞAA:

8>>>>>>>>>><
>>>>>>>>>>:

ð9Þ

Problem (8) is a two-stage integer programming problem,
where the analytical expression of second-stage value function
Q ðx; ξkÞ is unavailable. Thus, problem (8) cannot be solved by
conventional numerical algorithms, its heuristic solution methods
are designed in the next section.

4. Heuristic solution methods

In this section, we first employ DPM to find the critical path in
second-stage programming problem (9), then design a hybrid
algorithm by combining DPM and GPN-BPSO to solve SAA problem
(8).

4.1. Finding critical path

In order to solve problem (8), it is required to find critical path
effectively in the second-stage programming problem. By the
structural characteristics of critical path network and the optim-
ality principle of dynamic programming (see, [25]), we employ
DPM to update the longest path in the network. The computa-
tional formula is as follows:

f ðjÞ ¼ max
ði;jÞAA

ff ðiÞþðd½i�½j��ðd½i�½j��g½i�½j�Þx½i�½j�Þg; ð10Þ

where f ðiÞ represents the longest path of node i from the start of
the project, d½i�½j� represents an uninsured task duration of arc
ði; jÞAA, g½i�½j� represents an insured task duration of arc ði; jÞAA,
and x½i�½j� is 1 if arc (i,j) is insured, and 0 otherwise.

4.2. Hybrid GPN-BPSO

In this subsection, we design a new hybrid algorithm for the
solution of problem (8), in which DPM is embedded into a GPN-
BPSO. In this hybrid algorithm, the DPM is utilized to find the
critical path in the second-stage programming problem, and the
GPN-BPSO is used to search for the optimal location of insuring
critical path problem.

In our designed algorithm, we adopt the concept of genotype-
phenotype, which is widely used in biology. Generally, the
genotype means genetic messages carried by the individual's
genes, and the phenotype denotes all the observable character-
istics of an individual such as physical appearance and internal
physiology. The phenotype is determined partly by genes, the
environment and the way of life. Thus, the phenotype is partly
subject to the genotype, while some genetic messages are behaved

by the phenotype, just like the relationship between the genera-
tion particle and velocity for determining the particle position in
BPSO. Under this consideration, we employ the genotype and
phenotype to represent the velocity and the binary position
parameters, respectively.

On the other hand, in the original BPSO, the velocity is updated
according to the direction of the personal best position and the
global best position. In this paper, we consider the updating
process in its neighborhoods, and adjust the velocity in the
direction of the best particles in the neighborhoods and the global
best particle.

Based on the considerations above, we denote the modified
BPSO with genotype-phenotype-neighborhood as GPN-BPSO.
Incorporating DPM into the GPN-BPSO, we can design a new
hybrid GPN-BPSO for the solution of insuring critical path
problem.

Solution representation: A particle is denoted by a binary integer
vector x¼ ðxijÞAf0;1gjAj to represent a feasible solution of problem
(8), where jAj is the number of the arcs in the network. Each gene
xij is either 0 or 1, where 1 represents the arc (i,j) is insured, and
0 represents the arc (i,j) is not insured.

Initialization: We randomly generate a binary phenotype posi-
tion vector xp ¼ ðxp;1; xp;2;…; xp;jAjÞ from the f0;1gjAj, and initialize
the genotype position vector as xg ¼ xp. Repeating this process Psize
times, we can produce Psize pairs of initial phenotype and genotype
particles ðxp;1; xg;1Þ; ðxp;2; xg;2Þ;…; ðxP ; Psize; xg ; PsizeÞ.

Evaluation: Let Fitð�Þ be the fitness function. Its function value is
computed by

Fitð�Þ ¼ �1
K

∑
K

k ¼ 1
zk:

Neighborhood-based updating velocity, genotype and phenotype
particle: In these operations, we first need to find the Pbest;i with
the highest previous fitness for each phenotype particle xp;i, and to
determine the global best particle Gbest with the highest fitness in
the entire phenotype population. Then, for each i, the velocity
vector vi;d, the genotype particle xg;i, and the phenotype particles
xp;i are updated by the following formulas:

vi;d ¼w � vi;dþc1 � randðÞ � Dðxp;iÞþc2 � randðÞ � ðGbest;i�xp;iÞ;

xg;i ¼ xg;iþvi;d;

and

xp;i;j ¼
1 if randðÞoSðxg;i;jÞ
0 if randðÞZSðxg;i;jÞ;

(

where w is a coefficient, c1 and c2 are rates, rand() is randomly
generated from the interval ð0;1Þ, SðxÞ ¼ 1=ð1þe� xÞ is the sigmoid
function, xp;i;j is the component of vector xp;i, xg;i;j is the component
of vector xg;i and Dðxp;iÞ's are the average distances from xp;i to the
best positions in its neighbors:

Dðxp;1Þ ¼ ∑
2

k ¼ 1
randðÞ � Pbest;k�xp;1

2
;

Dðxp;iÞ ¼ ∑
iþ1

k ¼ i�1
randðÞ � Pbest;k�xp;i

3
; i¼ 2;3;…; Psize�1;

and

Dðxp;Psize Þ ¼ ∑
Psize

k ¼ Psize �1
randðÞ � Pbest;k�xp;Psize

2
:

From the updating process above, we can obtain a new
generation of phenotype particles x0p;1; x

0
p;2;…; x0p;Psize

.
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Hybrid algorithm procedure: Combining DPM and GPN-BPSO,
we now design a new hybrid GPN-BPSO for solving critical path
problem (8), and its solution process is as follows.

Algorithm 1. Hybrid GPN-BPSO.

Step 1: Set parameters w, c1, c2, vmax and Psize.
Step 2: Initialize randomly a population of phenotype particles.
Step 3: Update all the genotype particles and phenotype

particles.
Step 4: Find the critical path in the second-stage programming

problem (9) according to formula (10).
Step 5: Calculate the fitness of all the phenotype particles.
Step 6: Update the Pbest;i for each phenotype particle, and the

Gbest for the phenotype population.
Step 7: Repeat Step 3 to Step 6 for a given number of cycles.
Step 8: Report the particle Gbest as an optimal solution.

5. Computational results

In this section, we perform some numerical experiments to
demonstrate the effectiveness of hybrid GPN-BPSO. The algorithm
is coded in Cþþ programming language and the numerical
experiments are carried out on a personal computer (Lenovo with
Intel Pentium(R) Dual-Core E5700 3.00GHZ CPU and RAM 2.00GB),
using the Microsoft Windows 7 operating system.

Consider an insuring critical path problem with 30 nodes and 42
arcs: (0,1), (0,7), (0,15), (0,21), (1,2), (1,3), (2,4), (2,5), (3,4), (3,9), (4,6),

(5,6), (6,11), (7,8), (8,9), (8,12), (9,10), (10,11), (10,14), (11,29), (12,13),
(12,26), (13,14), (14,29), (15,16), (15,17), (15,18), (16,19), (17,19), (18,19),
(19,20), (20,26), (21,22), (22,23), (22,24), (23,25), (24,27), (25,26),
(25,28), (26,29), (27,28), (28,29), where (0,1) represents the arc from
node 0 to node 1, and the rests can be explained similarly.

For each arc ði; jÞAA, assume its task duration follows uniform
distribution over the interval [10,300]. According to practical
situation, a task duration is sometimes likely to be delayed or
sometimes ahead of task duration. Hence, we generate dij

k by
multiplying the task duration for ði; jÞAA and a random number
from a uniform distribution over the interval [0.9,1.5]. For each arc
ði; jÞAA, we randomly generate gij

k from the uniformly distributed
[0.5dijk, 0.7dijk], and generate the cost cij to insure arc ði; jÞAA from a
uniform distribution over the interval [25,50]. Finally, we round
the values of dijk, gijk, and cij to their nearest integer values. In this
insuring critical path problem, we set M¼ 105, and assume that
the penalty function is given by

ΘðtÞ ¼

0; 0otr800
50þðt�800Þ2=400; 800otr900

100þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t�900

p
=50; 900otr1000

150þðt�1000Þ2=200; t41000:

8>>>><
>>>>:

We now solve the insuring critical path problem by hybrid
GPN-BPSO. During the solution process, we set the population size
Psize ¼ 30, the maximum velocity vmax ¼ 2, the learning rates
c1 ¼ c2 ¼ 2, and the weight w decreases linearly from 0.9 to
0.4 in consecutive iterations by the following formula:

w¼ 0:5� GEN�gen
GEN

þ0:4;

where GEN and gen represent the maximum number of iterations
and the current number of iterations, respectively.

Table 1 summarizes the computational results obtained by
hybrid GPN-BPSO, where K in the first column is the number of
sample size; φ in the second column represents the threshold
value of maximum allowable cost; the best insured arcs

Table 1
The results of hybrid GPN-BPSO algorithm with GEN¼300.

K φ Best solution Objective value CPU (s)

1000 600 (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0.153000 19.078000
0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1)

625 (1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0.093000 19.735000
0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1)

650 (1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0.044000 19.485000
0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1)

2000 600 (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0.150500 37.407000
0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1)

625 (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0.080000 39.188000
0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1)

650 (1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0.039500 40.000000
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1)

4000 600 (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0.149250 74.391000
0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1)

625 (1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0.081000 78.156000
0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1)

650 (1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0.041750 78.468000
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1)

8000 600 (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0.149625 148.828000
0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1)

625 (1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0.081250 159.657000
0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1)

650 (1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0.043750 156.437000
0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1)

Table 2
Comparison results of different approaches with GEN¼300 and K¼4000.

φ 600 625 650

Hybrid GPN-BPSO
Best solution (1, 0, 0, 1, 0, 0, 0, (1, 1, 0, 1, 0, 0, 0, (1, 1, 0, 1, 0, 1, 0,

0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1,
0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0,
0, 0, 0, 0, 1, 0, 1) 0, 0, 0, 0, 1, 0, 1) 0, 0, 0, 0, 1, 0, 1)

Objective value 0.149250 0.081000 0.041750
CPU (s) 74.391000 78.156000 78.468000

Hybrid GA
Best solution (0, 0, 0, 1, 0, 1, 0, (0, 0, 0, 1, 0, 1, 0, (0, 1, 1, 1, 0, 1, 0,

0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0,
0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0) 0, 1, 0, 0, 0, 0, 0) 1, 1, 0, 0, 0, 0, 0)

Objective value 0.671300 0.635000 0.578700
CPU (s) 73.125000 74.812000 75.281000

Hybrid BPSO
Best solution (1, 1, 1, 1, 0, 0, 0, (1, 1, 0, 1, 0, 0, 0, (1, 1, 0, 1, 0, 0, 0,

0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1,
0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
0, 0, 0, 0, 1, 0, 1) 0, 0, 0, 0, 1, 0, 1) 0, 0, 0, 0, 1, 0, 1)

Objective value 0.244750 0.199500 0.206000
CPU (s) 72.891000 74.906000 74.844000

Z. Li et al. / Neurocomputing 148 (2015) 129–135 133



corresponding to various threshold values are listed in the third
column, and their best probability values are provided in the
fourth column; the fifth column reports the average CPU times.

6. Discussions

In this section, we will give detailed discussions about the
proposed risk averse insuring critical path model and the experi-
mental results.

Firstly, we discuss the experimental results. Toward this end,
we will show that some other heuristic algorithms like GA may be
alternatively utilized to form different hybrid solution approaches
to the proposed critical path problem. To further assess the
performance of the hybrid GPN-BPSO, we now compare its
solution results with those obtained by hybrid GA and BPSO.

In hybrid BPSO, we use the same data as in hybrid GPN-BPSO;
in hybrid GA, the parameters are set as follows: pop_size¼ 30,
number of generation GEN¼300, crossover probability Pc ¼ 0:3,
and mutation probability Pm ¼ 0:2.

With various threshold values of allowable costs, Table 2 reports
the best solutions and their corresponding probability values obtained
by three hybrid algorithms. The comparisons about the convergent
performance of three hybrid algorithms are plotted in Fig. 1.

From Table 2 and Fig. 1, we can see that hybrid GPN-BPSO can
always find the best solutions among three hybrid algorithms.
On the other hand, from Table 2, hybrid GPN-BPSO needs much
time among three hybrid algorithms. The reason is that hybrid
GPN-BPSO includes the genotype–phenotype mechanism, which
needs to operate a double update process at each generation.
However, it is evident that the relative errors about the times
consumed by three hybrid algorithms are very small.

From the above discussions, we conclude that hybrid GPN-
BPSO achieves the better performance than hybrid GA and hybrid
BPSO for our insuring critical path problem.

Secondly, we discuss the proposed risk averse insuring critical
path model. Since traditional two-stage stochastic critical path
problem is risk neural, it considers the expectation as a preference
criterion while comparing random costs to identify the best
decisions. In the current development, we consider a risk averse
two-stage critical path problem, where we specify the excess
probability as a risk measure. In other words, we may desire a
solution ensuring a low probability of very large costs. To demon-
strate our new modeling idea for insuring critical path problem,
we formulate the critical path problem in Section 5 as a risk neural
two-stage programming model; that is, we adopt expectation
objective function instead of probability objective function. To
compare the best decisions, we also solve the expected value
model by hybrid GPN-BPSO, GA and BPSO respectively, and their
solution results are reported in Table 3.

From Tables 2 and 3, we can find that the best solutions of
expected value model are different from those of minimum risk
problem. Consequently, risk averse decision makers will not
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Fig. 1. Performance comparison with φ ¼ 650, GEN¼300 and K¼4000.

Table 3
Comparison results of risk-neural model with GEN¼300.

K 1000 2000 4000 8000

Hybrid GPN-BPSO
Best solution (1, 1, 1, 1, 0, 0, 0, (1, 0, 0, 1, 0, 0, 0, (1, 1, 0, 1, 0, 0, 0, (1, 0, 0, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 0, 1, 0, 0) 0, 0, 0, 0, 1, 0, 0) 0, 0, 0, 0, 1, 0, 0) 0, 0, 0, 0, 1, 0, 0)

Objective value 534.552164 529.849057 528.721097 529.913219
CPU (s) 19.438000 38.313000 77.219000 152.391000

Hybrid GA
Best solution (1, 1, 0, 1, 0, 0, 0, (1, 1, 0, 1, 0, 0, 0, (1, 1, 0, 1, 0, 0, 0, (1, 1, 0, 1, 0, 0, 0,

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 0, 1, 0, 0) 0, 0, 0, 0, 1, 0, 0) 0, 0, 0, 0, 1, 0, 0) 0, 0, 0, 0, 1, 0, 0)

Objective value 542.571200 540.262400 538.943700 530.470800
CPU (s) 19.188000 39.344000 75.922000 154.875000

Hybrid BPSO
Best solution (1, 0, 0, 1, 0, 0, 0, (1, 1, 0, 1, 0, 1, 0, (1, 1, 1, 1, 0, 0, 0, (1, 1, 0, 1, 0, 1, 0,

0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1,
0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0,
0, 0, 0, 0, 1, 0, 1) 0, 0, 0, 0, 1, 0, 0) 0, 0, 0, 0, 0, 0, 0) 0, 0, 0, 0, 1, 0, 0)

Objective value 588.916990 590.815390 586.730401 590.677004
CPU (s) 19.093000 37.157000 75.969000 151.187000
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consider the solutions of the expected value model to be optimal.
Instead, they may consider the solutions of the proposed mini-
mum risk model as their desired optimal solutions.

7. Conclusions

In this paper, we have studied stochastic insuring critical path
problem, in which the task durations are uncertain and character-
ized by continuous random variables. The major new results
include the following four aspects.

(i) A new risk averse two-stage stochastic insuring critical path
problem was introduced, in which we adopted the minimum
risk criterion in the first-stage objective function. The task
durations in the second-stage programming problem are
characterized by continuous random variables.

(ii) We adapted the SAA method to probability objective function,
and turned the original stochastic insuring critical path problem
into its approximation one. To solve the resulting SAA insuring
critical path problem, we designed a new hybrid GPN-BPSO by
embedding DPM into a GPN-BPSO, where DPM is used to find the
critical paths in the second-stage programming problem.

(iii) We discussed the experimental results obtained by three
hybrid algorithms via a critical path problem with 30 nodes
and 42 arcs. We first solved our critical path problem by
hybrid GPN-BPSO, then compared its solution results with
those obtained by hybrid GA and hybrid BPSO. The computa-
tional results showed that hybrid GPN-BPSO achieves the
better performance than hybrid GA and hybrid BPSO.

(iv) We discussed the importance of the proposed risk averse critical
path model via numerical experiments. Computational results
demonstrated that risk averse decision makers will not consider
the solutions of the expected value model to be optimal. Instead,
they may consider the solutions of the proposed minimum risk
model as their desired optimal solutions.
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